on behalf of EUCanImage working group
Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:Colorectal liver metastases (CRLM) are a major cause of cancer-related mortality, and reliable detection on CT remains challenging in multi-centre settings. We developed a foundation model-based AI pipeline for patient-level classification and lesion-level detection of CRLM on contrast-enhanced CT, integrating uncertainty quantification and explainability. CT data from the EuCanImage consortium (n=2437) and an external TCIA cohort (n=197) were used. Among several pretrained models, UMedPT achieved the best performance and was fine-tuned with an MLP head for classification and an FCOS-based head for lesion detection. The classification model achieved an AUC of 0.90 and a sensitivity of 0.82 on the combined test set, with a sensitivity of 0.85 on the external cohort. Excluding the most uncertain 20 percent of cases improved AUC to 0.91 and balanced accuracy to 0.86. Decision curve analysis showed clinical benefit for threshold probabilities between 0.30 and 0.40. The detection model identified 69.1 percent of lesions overall, increasing from 30 percent to 98 percent across lesion size quartiles. Grad-CAM highlighted lesion-corresponding regions in high-confidence cases. These results demonstrate that foundation model-based pipelines can support robust and interpretable CRLM detection and classification across heterogeneous CT data.
Abstract:The orthogonal time frequency space (OTFS) signal is considered a promising solution for high-mobility wireless environments. It manages Doppler effects by utilizing delay-Doppler (DD) domain processing. However, the relatively long OTFS frame duration could introduce considerable sensing or communication latency when radar and communication are performed separately. By operating in a dual-functional radar and communication (DFRC) mode, the OTFS system performs sensing and data transmission simultaneously, thereby reducing the resulting latency. Nevertheless, the optimal OTFS DFRC signal strategy remains insufficiently explored. This paper investigates the optimal signal design for OTFS DFRC systems, focusing on pilot symbol design and data symbol power allocation. Specifically, we derive a channel capacity lower bound metric for communication that considers channel estimation errors in OTFS. For sensing, we derive an integrated sidelobe level (ISL), accounting for the randomness of the data symbols alongside the deterministic pilot symbols. Leveraging the above metrics, we formulate an optimization problem that balances radar and communication performance, and then solve it using an alternating optimization framework. We validate the proposed signal through numerical analysis and Monte Carlo simulations. Our analysis shows that OTFS DFRC enforces a deterministic pilot signal that is characterized by a concentrated peak in the DD domain, which furnishes a common structure in the DD domain facilitating sensing and channel estimation, with data multiplexed in other DD grids, thereby unifying sensing and communication within a single OTFS signal. Compared with conventional OTFS signals, the proposed OTFS DFRC signal expands the achievable sensing-communication performance region, delivering at least a 9.45 dB ISL suppression for sensing and a 4.82 dB SINR ratio gain for communication.
Abstract:Low-Earth-orbit (LEO) satellite communication systems face challenges due to high satellite mobility, which hinders the reliable acquisition of instantaneous channel state information at the transmitter (CSIT) and subsequently degrades multi-user transmission performance. This paper investigates a downlink multi-user multi-antenna system, and tackles the above challenges by introducing orthogonal time frequency space (OTFS) modulation and rate-splitting multiple access (RSMA) transmission. Specifically, OTFS enables stable characterization of time-varying channels by representing them in the delay-Doppler domain. However, realistic propagation introduces various inter-symbol and inter-user interference due to non-orthogonal yet practical rectangular pulse shaping, fractional delays, Doppler shifts, and imperfect (statistical) CSIT. In this context, RSMA offers promising robustness for interference mitigation and CSIT imperfections, and hence is integrated with OTFS to provide a comprehensive solution. A compact cross-domain input-output relationship for RSMA-OTFS is established, and an ergodic sum-rate maximization problem is formulated and solved using a weighted minimum mean-square-error based alternating optimization algorithm that does not depend on channel sparsity. Simulation results reveal that the considered practical propagation effects significantly degrade performance if unaddressed. Furthermore, the RSMA-OTFS scheme demonstrates improved ergodic sum-rate and robustness against CSIT uncertainty across various user deployments and CSIT qualities.
Abstract:This paper proposes a novel pilot scheme for multi-user uplink channel estimation in extra-large-scale massive MIMO (XL-MIMO) systems with extremely large aperture arrays (ELAA). The large aperture of ELAA introduces spatial non-stationarity, where far-apart users have significantly distinct visibility at the antennas, thereby reducing inter-user interference. This insight motivates our novel pilot scheme to group users with distinct visibility regions to share the same frequency subcarriers for channel estimation, so that more users can be served with reduced pilot overhead. Specifically, the proposed pilot scheme employs frequency-division multiplexing for inter-group channel estimation, while intra-group users -- benefiting from strong spatial orthogonality -- are distinguished by shifted cyclic codes, similar to code-division multiplexing. Additionally, we introduce a sub-array structured ELAA, where each sub-array is a traditional MIMO array and treated as spatial stationary, while the distances between sub-arrays can be significantly larger to achieve an expanded aperture. The channel support for sub-arrays features clustered sparsity in the antenna-delay domain and is modeled by a 2-dimensional (2-D) Markov random field (MRF). Based on this, we propose a low-complexity channel estimation algorithm within a turbo Bayesian inference framework that incorporates the 2-D MRF prior model. Simulations show that the proposed scheme and algorithm allow the XL-MIMO system to support more users, and deliver superior channel estimation performance.
Abstract:Purpose: To evaluate the impact of harmonization and multi-region CT image feature integration on survival prediction in non-small cell lung cancer (NSCLC) patients, using handcrafted radiomics, pretrained foundation model (FM) features, and clinical data from a multicenter dataset. Methods: We analyzed CT scans and clinical data from 876 NSCLC patients (604 training, 272 test) across five centers. Features were extracted from the whole lung, tumor, mediastinal nodes, coronary arteries, and coronary artery calcium (CAC). Handcrafted radiomics and FM deep features were harmonized using ComBat, reconstruction kernel normalization (RKN), and RKN+ComBat. Regularized Cox models predicted overall survival; performance was assessed using the concordance index (C-index), 5-year time-dependent area under the curve (t-AUC), and hazard ratio (HR). SHapley Additive exPlanations (SHAP) values explained feature contributions. A consensus model used agreement across top region of interest (ROI) models to stratify patient risk. Results: TNM staging showed prognostic utility (C-index = 0.67; HR = 2.70; t-AUC = 0.85). The clinical + tumor radiomics model with ComBat achieved a C-index of 0.7552 and t-AUC of 0.8820. FM features (50-voxel cubes) combined with clinical data yielded the highest performance (C-index = 0.7616; t-AUC = 0.8866). An ensemble of all ROIs and FM features reached a C-index of 0.7142 and t-AUC of 0.7885. The consensus model, covering 78% of valid test cases, achieved a t-AUC of 0.92, sensitivity of 97.6%, and specificity of 66.7%. Conclusion: Harmonization and multi-region feature integration improve survival prediction in multicenter NSCLC data. Combining interpretable radiomics, FM features, and consensus modeling enables robust risk stratification across imaging centers.
Abstract:We present a fully automated, anatomically guided deep learning pipeline for prostate cancer (PCa) risk stratification using routine MRI. The pipeline integrates three key components: an nnU-Net module for segmenting the prostate gland and its zones on axial T2-weighted MRI; a classification module based on the UMedPT Swin Transformer foundation model, fine-tuned on 3D patches with optional anatomical priors and clinical data; and a VAE-GAN framework for generating counterfactual heatmaps that localize decision-driving image regions. The system was developed using 1,500 PI-CAI cases for segmentation and 617 biparametric MRIs with metadata from the CHAIMELEON challenge for classification (split into 70% training, 10% validation, and 20% testing). Segmentation achieved mean Dice scores of 0.95 (gland), 0.94 (peripheral zone), and 0.92 (transition zone). Incorporating gland priors improved AUC from 0.69 to 0.72, with a three-scale ensemble achieving top performance (AUC = 0.79, composite score = 0.76), outperforming the 2024 CHAIMELEON challenge winners. Counterfactual heatmaps reliably highlighted lesions within segmented regions, enhancing model interpretability. In a prospective multi-center in-silico trial with 20 clinicians, AI assistance increased diagnostic accuracy from 0.72 to 0.77 and Cohen's kappa from 0.43 to 0.53, while reducing review time per case by 40%. These results demonstrate that anatomy-aware foundation models with counterfactual explainability can enable accurate, interpretable, and efficient PCa risk assessment, supporting their potential use as virtual biopsies in clinical practice.
Abstract:Background: Accurate MRI-based identification of extramural vascular invasion (EVI) and mesorectal fascia invasion (MFI) is pivotal for risk-stratified management of rectal cancer, yet visual assessment is subjective and vulnerable to inter-institutional variability. Purpose: To develop and externally evaluate a multicenter, foundation-model-driven framework that automatically classifies EVI and MFI on axial and sagittal T2-weighted MRI. Methods: This retrospective study used 331 pre-treatment rectal cancer MRI examinations from three European hospitals. After TotalSegmentator-guided rectal patch extraction, a self-supervised frequency-domain harmonization pipeline was trained to minimize scanner-related contrast shifts. Four classifiers were compared: ResNet50, SeResNet, the universal biomedical pretrained transformer (UMedPT) with a lightweight MLP head, and a logistic-regression variant using frozen UMedPT features (UMedPT_LR). Results: UMedPT_LR achieved the best EVI detection when axial and sagittal features were fused (AUC = 0.82; sensitivity = 0.75; F1 score = 0.73), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.74). The highest MFI performance was attained by UMedPT on axial harmonized images (AUC = 0.77), surpassing the Chaimeleon Grand-Challenge winner (AUC = 0.75). Frequency-domain harmonization improved MFI classification but variably affected EVI performance. Conventional CNNs (ResNet50, SeResNet) underperformed, especially in F1 score and balanced accuracy. Conclusion: These findings demonstrate that combining foundation model features, harmonization, and multi-view fusion significantly enhances diagnostic performance in rectal MRI.




Abstract:This paper presents DriVerse, a generative model for simulating navigation-driven driving scenes from a single image and a future trajectory. Previous autonomous driving world models either directly feed the trajectory or discrete control signals into the generation pipeline, leading to poor alignment between the control inputs and the implicit features of the 2D base generative model, which results in low-fidelity video outputs. Some methods use coarse textual commands or discrete vehicle control signals, which lack the precision to guide fine-grained, trajectory-specific video generation, making them unsuitable for evaluating actual autonomous driving algorithms. DriVerse introduces explicit trajectory guidance in two complementary forms: it tokenizes trajectories into textual prompts using a predefined trend vocabulary for seamless language integration, and converts 3D trajectories into 2D spatial motion priors to enhance control over static content within the driving scene. To better handle dynamic objects, we further introduce a lightweight motion alignment module, which focuses on the inter-frame consistency of dynamic pixels, significantly enhancing the temporal coherence of moving elements over long sequences. With minimal training and no need for additional data, DriVerse outperforms specialized models on future video generation tasks across both the nuScenes and Waymo datasets. The code and models will be released to the public.




Abstract:We present UniFuture, a simple yet effective driving world model that seamlessly integrates future scene generation and perception within a single framework. Unlike existing models focusing solely on pixel-level future prediction or geometric reasoning, our approach jointly models future appearance (i.e., RGB image) and geometry (i.e., depth), ensuring coherent predictions. Specifically, during the training, we first introduce a Dual-Latent Sharing scheme, which transfers image and depth sequence in a shared latent space, allowing both modalities to benefit from shared feature learning. Additionally, we propose a Multi-scale Latent Interaction mechanism, which facilitates bidirectional refinement between image and depth features at multiple spatial scales, effectively enhancing geometry consistency and perceptual alignment. During testing, our UniFuture can easily predict high-consistency future image-depth pairs by only using the current image as input. Extensive experiments on the nuScenes dataset demonstrate that UniFuture outperforms specialized models on future generation and perception tasks, highlighting the advantages of a unified, structurally-aware world model. The project page is at https://github.com/dk-liang/UniFuture.